
ar
X

iv
:2

20
6.

01
71

0v
2 

 [
cs

.G
T

] 
 4

 N
ov

 2
02

2

Existence and Computation of Epistemic EFX Allocations∗

Ioannis Caragiannis†

iannis@cs.au.dk

Jugal Garg‡

jugal@illinois.edu

Nidhi Rathi†

nidhi@cs.au.dk

Eklavya Sharma‡

eklavya2@illinois.edu

Giovanna Varricchio§

varricchio@em.uni-frankfurt.de

Abstract

We consider the problem of allocating indivisible goods among n agents in a fair manner.
For this problem, one of the best notions of fairness is envy-freeness up to any good (EFX).
However, it is not known if EFX allocations always exist. Hence, several relaxations of EFX
allocations have been studied. We propose another relaxation of EFX, called epistemic EFX
(EEFX). An allocation is EEFX iff for every agent i, it is possible to shuffle the goods of the
other agents such that agent i does not envy any other agent up to any good. We show that
EEFX allocations always exist for additive valuations, and give a polynomial-time algorithm
for computing them. We also show how EEFX is related to some previously-known notions
of fairness.

1 Introduction

Fairly dividing a set of goods (or chores) among agents is a fundamental problem in various
multi-agent settings that has received a lot of attention in the last decade. The exact definition
of fair is open to interpretation, and consequently, many different notions of fairness have been
studied. In the case where the goods are divisible (i.e., each good can be split into parts and
the parts can be distributed among multiple agents), envy-freeness and proportionality are two
very popular notions of fairness. An allocation is called envy-free if every agent values her
own bundle more than the bundle of any other agent. An allocation among n agents is called
proportional if every agent’s value for her bundle is at least 1/n times the total value of all
goods. In the discrete setting, where goods are indivisible, these notions of fairness are not
always achievable, e.g., when there are two agents and a single valuable good, one agent must
get nothing. Hence, relaxations of these notions have been explored.

A promising relaxation of envy-freeness is envy-freeness up to any good (EFX) [15]. An
agent i is said to be EFX-satisfied by an allocation if she does not envy any other agent j
when any good is removed from j’s bundle. An allocation is called EFX if all agents are EFX-
satisfied by that allocation. Formally, let there be n agents and let M be the set of goods. Let
vi : 2

M 7→ R≥0 be agent i’s valuation function. Then agent i is said to be EFX-satisfied by the
allocation (X1,X2, . . . ,Xn) if

vi(Xi) ≥ max
j 6=i

max
g∈Xj

vi(Xj \ {g}).
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Despite significant effort (according to [15]), it is not yet known if an EFX allocation always
exists, even for additive valuations. Hence, there has been significant interest in studying notions
of fairness that are relaxations of EFX, like approximate EFX [24, 16, 2], and EFX-with-charity
[14, 19, 18]. Envy-freeness up to one good (EF1) [13] is a relaxation of EFX that was studied
before EFX. While the question of EFX allocations is still being actively worked on, such
relaxations not only shed light on possible approaches to resolve the question, but also give us
notions of fairness to use if it is eventually found that EFX allocations do not exist. Motivated
by this line of work, we study another relaxation of EFX, called epistemic EFX (EEFX), which
is fundamentally different from existing relaxations. Before we formally define EEFX, we would
like to first give additional motivation.

An important philosophical question is that which of envy-freeness and proportionality is
a more appropriate notion of fairness. This question was sidestepped for the fair division of
divisible goods since envy-freeness implies proportionality for subadditive valuations. However,
for fair division of indivisible goods, this question resurfaces since obtaining EFX allocations
has been an elusive goal. This gives an important reason to also consider relaxations of propor-
tionality.

One of the main philosophical arguments in favor of proportionality, as opposed to envy-
freeness, is that as long as an agent is getting at least her due share, she shouldn’t care if
some other agent is getting more than her; what others get is none of her business. On a more
pragmatic note, it may sometimes be impossible or inappropriate for an agent to know the
bundles of the other agents if agents expect others to respect their privacy. This could prevent
an agent from verifying whether the allocation is fair if the notion of fairness is based on a
relaxation of envy-freeness. However, relaxations of proportionality would not suffer from this
problem since an agent can compute her due share without knowing others’ bundles.

We now formally define EEFX. Agent i is said to be EEFX-satisfied by an allocation
(X1, . . . ,Xn) if there is another allocation (Y1, . . . , Yn) such that Yi = Xi and agent i is EFX-
satisfied by Y . An allocation is EEFX if every agent is EEFX-satisfied by the allocation. Note
that agent i doesn’t need to know the bundles of other agents to know that X is a fair allocation;
she only needs to know Y , which serves as a certificate that X is indeed a fair allocation. It’s
important to note that different agents can receive different certificates. Essentially, EEFX is a
relaxation of proportionality that is defined using ideas from envy-freeness.

Another reason to consider EEFX allocations is that allocations can be unstable with respect
to EFX. Consider an EFX allocation (X1,X2, . . . ,Xn) and an agent i. Agents other than i
can possibly exchange goods among themselves to increase their utility (see Example 1 for an
example). Let (Y1, . . . , Yn) be the resulting allocation after this exchange. Note that Yi = Xi,
since agent i didn’t participate in the exchange. Now agent i need not be EFX-satisfied by Y ,
but she will be EEFX-satisfied by Y , with X as the certificate. Hence, even if we somehow
compute an EFX allocation to begin with, we cannot guarantee that the eventual allocation will
be EFX. Given that obtaining EFX allocations has been a difficult open problem, computing
an EEFX allocation is a reasonable goal, since EFX allocations may eventually change into
EEFX allocations anyways. A Pareto-optimal allocation would prevent agents from exchanging
goods among themselves, but it is not known (for non-zero additive valuations) if there exist
allocations that are both Pareto-optimal and EFX.
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Table 1: An allocation of 9 goods among 3 agents, where the agents have positive, additive,
non-identical valuations.

x a1 a2 b1 b2 c1 c2 d1 d2 e

v1(x) 50 50 1 1 10 10 1 1 1

v2(x) 1 1 10 10 1 1 50 50 1

v3(x) 10 10 1 1 10 10 1 1 25

Example 1. Consider the fair-division instance given by Table 1.
Then X = ({a1, a2, b1, b2}, {c1, c2, d1, d2}, {e}) is an envy-free (and hence EFX) allocation. Let
Y = ({a1, a2, c1, c2}, {b1, b2, d1, d2}, {e}) be the allocation obtained when agents 1 and 2 exchange
the goods {b1, b2} and {c1, c2}. Note that v1(Y1) = 120 > v1(X1) = 102 and v2(Y2) = 120 >
v2(X2) = 102, so agents 1 and 2 experience an increase in utility. However,

min
g∈Y1

v3(Y1 − {g}) = 30 > 25 = v3(Y3),

so agent 3 envies agent 1 even if we remove any good from agent 1. Hence, Y is not an EF1
allocation (and hence also not EFX).

1.1 Our Contribution

We show that EEFX allocations always exist for additive and more generally, for non-negative
and cancelable valuations (see Section 2.1 for definition). We also show that EEFX-certificates
of all agents can be computed in polynomial-time. We use Barman and Krishnamurthy’s algo-
rithm [8] with a new and involved analysis, and hence our EEFX allocation is also a 2/3-MMS
allocation for additive valuations.

An EFX allocation exists when valuations are ordered (c.f. Definition 2 in Section 3) [8].
In many fair division contexts, valuations need not be ordered, but there may still be a strong
correlation between agents’ valuations. We show (in Section 3.1) that our algorithm outputs an
approximate-EFX allocation when valuations are correlated.

In Section 4.1, we prove that for strongly monotone valuations, an MMS allocation is also
an EEFX allocation, and that an EEFX allocation is a 4/7-MMS allocation. In Section 4.2,
we show that an EEFX allocation is also PROP1, but may not be PROPm (see Section 1.2 for
definitions of these notions).

1.2 Related Work

Epistemic Envy-Freeness. The notion of epistemic envy-freeness (EEF) was defined by Aziz
et al. [3]. EEF allocations may not always exist, e.g., if there are two agents and a single item.
[3] shows (for general monotone valuations) that an envy-free allocation is EEF, and that an
EEF allocation is a proportional allocation.

MMS. Budish [13] defined a relaxation of proportionality called maximin share (MMS).
When dividing goods among n agents, the maximin share of agent i, denoted as MMSi, is
defined as the maximum utility agent i can obtain by partitioning the goods into n bundles
and picking the bundle with the minimum utility. An allocation is called MMS if each agent
i receives a bundle of value at least MMSi. MMS allocations may not exist [25, 21], even for
3 agents with additive valuations. An allocation is called α-MMS (where 0 < α ≤ 1) if each
agent i receives a bundle of value at least α · MMSi. Barman and Krishnamurthy [8] give an
algorithm to compute a 2n/(3n − 1)-MMS allocation, where n is the number of agents. Garg
and Taki [20] give an algorithm that computes a (3/4 + 1/(12n))-MMS allocation.
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EFX allocations in special cases. EFX allocations can be obtained in special cases.
Plaut and Roughgarden [24] gave algorithms for finding EFX+MMS+PO allocations for general
monotone valuations when there are only 2 agents or when all agents have the same valuation
function. A fair division instance consisting of goods {g1, g2, . . . , gm} is called ordered iff for each
agent i, we have vi({g1}) ≥ vi({g2}) ≥ . . . ≥ vi({gm}). There is a polynomial-time algorithm
for computing an EFX allocation for ordered instances (Lemma 3.5 in [8], Theorem 6.2 in [24])
Chaudhary, Garg and Mehlhorn [17] showed that EFX allocations exist for 3 agents. EFX
allocations always exist when the number of goods is at most 2 more than the number of agents
[2].

EF1. Budish [13] introduced the notion of envy-free up to one good (EF1). An allocation
is EF1 iff for every pair (i, j) of agents, it’s possible to remove a good from j’s bundle so that i
values her own bundle more than j’s bundle. EF1 allocations can be computed in polynomial
time [22], even for general monotone valuations. For additive valuations, EF1 allocations that
are Pareto-optimal can be computed in pseudopolynomial time [9], and allocations that maxi-
mize the Nash Social Welfare (NSW), defined as the geometric mean of agents’ valuations, are
EF1 [15].

α-EFX. An allocation (X1,X2, . . . ,Xn) is called α-EFX (α ≤ 1) iff for every agent i,

vi(Xi) ≥ α ·max
j 6=i

max
g∈Xj

vi(Xj \ {g}).

Plaut and Roughgarden [24] show how to find 1/2-EFX allocations for subadditive valuations.
[16] gives a polynomial-time algorithm to find an allocation that is both EF1 and 1/2-EFX for
subadditive valuations. For additive valuations, an NSW-maximizing allocation is 0.6180-EFX
[15]. [2] shows how to compute a 0.6180-EFX allocation in polynomial time.

EFX with charity. [14] introduced the notion of EFX-with-charity, i.e., we allow throwing
away some goods and allocating the remaining items such that the resulting allocation is EFX.
[19] shows how to obtain an EFX allocation for general monotone valuations after throwing away
a set P of goods such that no agent envies P and |P | < n, where n is the number of agents. [18]
shows how to obtain a (1− ε)-EFX allocation after throwing away at most 64(n/ε)4/5 goods.

PMMS and GMMS. An allocation (X1,X2, . . . ,Xn) satisfies the α-pairwise maximin
share (α-PMMS) guarantee [15] iff for every pair (i, j) of agents, the allocation (Xi,Xj) of the
goods Xi∪Xj among agents i and j is an α-MMS allocation. It can be shown that an α-PMMS
allocation is also an α-EFX allocation, even for general monotone valuations. Extending this
notion to all k-tuples of agents gives us the α-gropwise maximin share (α-GMMS) notion [6].
Note that an α-GMMS allocation is both an α-PMMS allocation and an α-MMS allocation.
[6] mentions many shortcomings of MMS allocations that GMMS allocations don’t have. An
NSW-maximizing allocation is 0.6180-PMMS. [15]. 1/2-GMMS allocations can be computed in
polynomial time [6]. [19] gave an algorithm for computing 4/7-GMMS allocations. 1-GMMS
allocations always exist when the number of goods is at most 2 more than the number of agents
[2].

PROPx, PROP1, PROPm. PROPx, PROP1 and PROPm are relaxations of propor-
tionality. An allocation X = (X1, . . . ,Xn) of goods M is said to be PROPx if for every agent
i, vi(Xi) ≥ vi(M)/n−ming∈M\Xi

vi({g}) [5, 4]. PROPx allocations do not always exist [4]. An
allocation X is said to be PROP1 if for every agent i, vi(Xi) ≥ vi(M)/n −maxg∈M\Xi

vi({g})
[5, 4]. It is easy to see that an EF1 allocation is also a PROP1 allocation. There exists a strongly
polynomial-time algorithm for computing allocations that are both PROP1 and Pareto-optimal
[7, 4, 23]. An allocation X = (X1, . . . ,Xn) of goods M is called PROPm if for every agent i,

vi(Xi) ≥
vi(M)

n
−max

j 6=i
min
g∈Xj

vi({g}).

PROPm allocations always exist and can be computed in polynomial time [5].
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2 Notation and Preliminaries

For a non-negative integer n, define [n] := {1, 2, . . . , n}.

In the fair division problem, we are given a set [m] of items that need to be distributed among
n agents. An allocation is defined to be a tuple X := (X1,X2, . . . ,Xn), where Xi ∩Xj = ∅ for
all i 6= j and ∪n

i=1Xi = [m]. Here Xi is the set of items allocated to agent i. Xi is called agent
i’s bundle.

The value that an agent i assigns to a set of items is captured by her valuation function,
which takes as input a subset of items from [m] and returns a real number. For any valuation
function v, we assume that v(∅) = 0. For an item g, we will write v(g) instead of v({g}) for
simplicity. An agent’s disutility function is the negative of her valuation function.

A function v : 2[m] 7→ R is called non-negative if v(S) ≥ 0 for any S ⊆ [m]. v is called
monotone if v(S) ≤ v(T ) whenever S ⊆ T . Unless specified otherwise, all valuation functions
are assumed to be monotone. v is called additive if v(S) =

∑
g∈S v({g}) for all S ⊆ [m].

A fair-division instance is given by a list V := [v1, v2, . . . , vn], where vi : 2
[m] 7→ R is the ith

agent’s valuation function, the set of goods is [m] and the set of agents is [n]. When valuations
are additive, V can be represented as an m-by-n matrix.

Definition 1. For a valuation function v, define another function w : 2[m] 7→ R as w(X) :=
maxg∈X v(X \ {g}) if X 6= ∅ and let w(∅) := 0. Then w is called the one-less-function of v, and
is denoted by oneLess(v).

2.1 Cancelable Valuations

A function v : 2[m] 7→ R is called cancelable if ∀S ⊆ [m], ∀T ⊆ [m] and ∀g ∈ [m] \ (S ∪ T ), we
have v(S ∪ {g}) > v(T ∪ {g}) =⇒ v(S) > v(T ) (Definition 2.1 in [10]). The following results
are easy corollaries of the definition.

Claim 1. Let v be a cancelable function. Then ∀S ⊆ [m], ∀T ⊆ [m], ∀R ⊆ [m] \ (S ∪ T ), we
have v(S) ≥ v(T ) =⇒ v(S ∪R) ≥ v(T ∪R).

Claim 2. If v is cancelable, then −v is also cancelable.

Cancelable functions generalize additive functions.

2.2 Ordered Valuations

Given a valuation function v : 2[m] 7→ R, we will see how to construct another valuation
function v′ : 2[m] 7→ R, called the ordered valuation of v, such that {v(1), v(2), . . . , v(m)} =
{v′(1), v′(2), . . . , v′(m)} and v′(1) ≥ v′(2) ≥ . . . ≥ v′(m). Such valuation functions have been
studied in [12, 8].

Definition 2 (Ordered valuation). Let v : 2[m] 7→ R be a valuation function. Let π :=
[π1, π2, . . . , πm] be a permutation of [m] such that v(π1) ≥ v(π2) ≥ . . . ≥ v(πm) (break ties
by picking smaller items first, i.e., if v(i) = v(j) and i < j, then i appears before j in the se-
quence π). For S ⊆ [m], define v′(S) := v({πi : i ∈ S}). Then v′ is called the ordered valuation
of v, and is denoted by ordered(v).

A fair division instance is called an ordered instance if for every agent i, their valuation
function vi satisfies vi = ordered(vi). Intuitively, an instance is ordered iff all agents value
items in the same order.
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3 Finding EEFX Allocations for Cancelable Valuations

We will reduce the problem of computing an EEFX allocation to the problem of computing an
EFX allocation for an ordered instance (recall Definition 2). A similar reduction was used by
Barman and Krishnamurthy [8], and Bouveret and Lemâıtre [12] for the fair division of goods.

Definition 3 (Allocation vector). Let X := (X1, . . . ,Xn) be an allocation of items [m] among
n agents. Let aj be the agent that received item j in allocation X (i.e., aj = i ⇐⇒ j ∈ Xi).
Then the list [a1, a2, . . . , am] is called the allocation vector of X.

Algorithm 1 gives the outline of our algorithm. This algorithm works in two stages. In
the first stage, it computes an allocation X ′ of items [m] that is EFX according to valuations
[v′1, . . . , v

′
n], where v′i = ordered(vi). Let A := [a1, . . . , am] be the allocation vector of X ′. The

second stage of the algorithm, which we call pickByList, has m rounds, where in the tth round,
we ask agent at to pick their most-valuable unallocated item. See Algorithm 2 for a more formal
description of pickByList.

Algorithm 1 BarKri(V ): Allocates items [m] among n agents. Here V := [v1, v2, . . . , vn],
where vi is the valuation function of agent i. Returns an allocation X := (X1,X2, . . . ,Xn).

1: For each i ∈ [n], let v′i := ordered(vi).
2: Compute an allocation X ′ of items [m] that is EFX for valuations [v′1, v

′
2, . . . , v

′
n].

3: Let A be the allocation vector of X ′.
4: return pickByList(A,V ).

Algorithm 2 pickByList(A,V ): Allocates items [m] to n agents. Here A := [a1, . . . , am] and
V := [v1, . . . , vn], where aj ∈ [n] and vi is the valuation function of the ith agent. Returns an
allocation X := (X1,X2, . . . ,Xn).

1: Initialize the set S = [m].
2: Initialize Xi = ∅ for i ∈ [n].
3: for t from 1 to m do

4: Let agent at pick their favorite item ĝ from S, i.e., ĝ ∈ argmaxg∈S vat(g).
5: Xat = Xat ∪ {ĝ}. S = S \ {ĝ}.
6: end for

7: return (X1,X2, . . . ,Xn).

Theorem 3. There is a polynomial-time algorithm to find an EFX allocation for an ordered
fair division instance when valuations are non-negative and cancelable.

Proof. When valuations are additive and non-negative, the envy-cycle-elimination algorithm
finds an EFX allocation for ordered instances (Lemma 3.5 in [8]). This result can be easily
extended to non-negative cancelable valuations by the following observation.

Let S := {g1, g2, . . . , gk}. For any agent i having valuation function vi, we can assume
without loss of generality that vi(g1) ≥ vi(g2) ≥ . . . ≥ vi(gk), since the fair division instance is
ordered. For any j ∈ [k − 1], let T := S \ {gj , gk}. By Claim 1, we get that

vi(gj) ≥ vi(gk) =⇒ vi(T ∪ {gj}) ≥ vi(T ∪ {gk}) =⇒ vi(S \ {gk}) ≥ vi(S \ {gj}).

Define A[= i] to be the sequence of rounds (in increasing order) in which agent i gets to pick
an item, i.e., A[= i] := [t ∈ [m] : at = i]. Similarly, define A[6= i] := [t ∈ [m] : at 6= i]. Since A is
the allocation vector of X ′, we get that for every agent i, X ′

i = A[= i] and [m] \X ′
i = A[6= i].
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Definition 4. Let B and C be two sets of items where |B| = |C|. Let v be a valuation function.
Assume without loss of generality that B := {b1, b2, . . . , bk} and C := {c1, c2, . . . , ck}, where
v(b1) ≥ v(b2) ≥ . . . ≥ v(bk) and v(c1) ≥ v(c2) ≥ . . . ≥ v(ck). Then we say that B dominates C
in v (denoted as B �v C) if v(bj) ≥ v(cj) for every j ∈ [k].

We will now prove two crucial theorems (Theorems 4 and 5) about pickByList. Note that
these theorems work for arbitrary valuation functions (even ones that are non-monotone or
non-positive).

Theorem 4. Let X ′ be any allocation of items [m] among n agents. Let A be the allocation
vector of X ′. Let X := pickByList(A,V ), where V := [v1, . . . , vn]. Then for every i ∈ [n],
Xi �vi X

′
i.

Proof. Let A[= i] := [t1, t2, . . . , tk]. Let gj be the jth item picked by agent i, so Xi =
{g1, g2, . . . , gk}. Without loss of generality, assume vi(1) ≥ vi(2) ≥ . . . ≥ vi(m). Thus, agent i
always picks the smallest-numbered item.

Let S be the unallocated items available at the beginning of round tj. At this time, tj − 1
items have already been picked, so |S| = m− (tj−1). Agent i picks item min(S), and min(S) ≤
tj. Hence, gj ≤ tj, which implies vi(gj) ≥ vi(tj), which implies Xi �vi A[= i] = X ′

i.

Theorem 5. Let X ′ be any allocation of items [m] among n agents. Let A be the allocation
vector of X ′. Let X := pickByList(A,V ), where V := [v1, . . . , vn]. Then for every p ∈ [n],
[m] \Xp �vp [m] \X ′

p.

Proof. Without loss of generality, assume p = 1 and v1(1) ≥ v1(2) ≥ . . . ≥ v1(m). We say that
an item i is smaller than an item j if i < j. Let A[6= 1] := [t1, t2, . . . , tq]. Let [m] \ X1 :=
[g1, g2, . . . , gq], where g1 < g2 < . . . < gq. We will prove that gi ≥ ti for each i ∈ [q]. That would
imply v1(gi) ≤ v1(ti), which in turn would imply [m] \Xp �vp A[6= p] = [m] \X ′

p.

The items [m] \X1 may not be picked in the order [g1, g2, . . . , gq], since agents other than
agent 1 may have a different preference order over them. Hence, it’s possible for an item gi to
be picked in round tj in pickByList, and j may be larger, smaller or equal to i.

Among {g1, g2, . . . , gi}, let gk be the last item to be picked. At least i− 1 items were picked
before gk, so gk was picked in round tℓ, where ℓ ≥ i. Since gk was unpicked in the beginning
of round tℓ, it was also unpicked in the beginning of round ti. In the first ti − 1 rounds,
agent 1 had picked ti − i items. Since agent 1 only picks the smallest item available to her in
each round, these items are smaller than gk, and hence they are smaller than gi. The items
{g1, g2, . . . , gi−1}, which were picked by agents other than 1, are also smaller than gi. Hence,
there are (ti − 1) + (i− 1) = ti − 1 items that are smaller than gi. Hence, gi ≥ ti.

Lemma 6. Let v be a cancelable function. Let B and C be sets of items such that B �v C.
Then v(B) ≥ v(C).

Proof. Let B := {b1, b2, . . . , bk} and C := {c1, c2, . . . , ck}, where v(b1) ≥ v(b2) ≥ . . . ≥ v(bk)
and v(c1) ≥ v(c2) ≥ . . . ≥ v(ck). Since B � C, we get that v(bi) ≥ v(ci) for all i ∈ [k].

Let Z(i) := {b1, b2, . . . , bi, ci+1, . . . , ck}, where 0 ≤ i ≤ k. Then B = Z(k) and C = Z(0). For
i ∈ [k], let Y (i) := {b1, . . . , bi−1, ci+1, . . . , ck}. By Claim 1,

v(bi) ≥ v(ci) =⇒ v(Y (i) ∪ {bi}) ≥ v(Y (i) ∪ {ci}) =⇒ v(Z(i)) ≥ v(Z(i−1)).

This gives us v(B) = v(Z(k)) ≥ v(Z(k−1)) ≥ . . . ≥ v(Z(1)) ≥ v(Z(0)) = v(C).

Lemma 7. Let v : 2[m] 7→ R be a cancelable function. Let w := oneLess(v). Let B and C be
sets of items such that B �v C. Then w(B) ≥ w(C).
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Proof. Let B := {b1, b2, . . . , bk} and C := {c1, c2, . . . , ck}, where v(b1) ≥ v(b2) ≥ . . . ≥ v(bk)
and v(c1) ≥ v(c2) ≥ . . . ≥ v(ck). Since B � C, we get that v(bi) ≥ v(ci) for all i ∈ [k]. The case
k ≤ 1 is trivially true, so assume k ≥ 2.

For any j ∈ [k − 1], let T := B \ {bj , bk}. By Claim 1, we get that

vi(bj) ≥ vi(bk) =⇒ vi(T ∪ {bj}) ≥ vi(T ∪ {bk}) =⇒ vi(B \ {bk}) ≥ vi(B \ {bj}).

Hence, w(B) = v(B \ {bk}). Similarly, w(C) = v(C \ {ck}).

Since B \ {bk} �v C \ {ck}, we get w(B) ≥ w(C) by Lemma 6.

Lemma 8. Let X := BarKri(V ), where V := [v1, v2, . . . , vn], vi is the valuation of agent i, and
vi is non-negative and cancelable. Then X is an EEFX allocation. Furthermore, given X ′ from
line 2 of BarKri(V ), we can compute the EEFX-certificates of all agents in polynomial time.

Proof. We will show that agent 1 is EEFX-satisfied by X and show how to compute her EEFX-
certificate in polynomial time. Then Lemma 8 would follow by symmetry. Assume without loss
of generality that v1(1) ≥ v1(2) ≥ . . . ≥ v1(m). Then v1 = v′1, where v′i := ordered(vi).

Define Y1 := X1. Let [m] \X ′
1 := {t1, t2, . . . , tq}. Let [m] \X1 := {g1, g2, . . . , gq}. Without

loss of generality, assume v1(t1) ≥ v1(t2) ≥ . . . ≥ v1(tq) and v1(g1) ≥ v1(g2) ≥ . . . ≥ v1(gq). For
i ≥ 2, define Yi := {gj : tj ∈ X ′

i}. Define Y := (Y1, Y2, . . . , Yn). Note that Y can be computed
in polynomial time. By Theorem 5, we get [m] \X1 �v1 [m] \X ′

1, which implies v1(gj) ≤ v1(tj)
for all j. Hence, for every i ≥ 2, we get Yi �v1 X ′

i.

Let wi := oneLess(vi). By Theorem 4, we have X1 �v1 X ′
1. By Lemma 6, we get v1(X1) ≥

v1(X
′
1). X ′ is an EFX allocation for valuations [v′1, . . . , v

′
n]. Since v1 = v′1, agent 1 is EFX-

satisfied by X ′ for valuation v1. This gives us v1(X
′
1) ≥ w1(X

′
i) for all i ∈ [n]. Since X ′

i �v1 Yi,
Lemma 7 gives us w1(X

′
i) ≥ w1(Yi) for all i ∈ [n] \ {1}. Hence, for each i ∈ [n] \ {1}, we

get v1(Y1) = v1(X1) ≥ v1(X
′
1) ≥ w1(X

′
i) ≥ w1(Yi). Hence, agent 1 is EFX-satisfied by Y .

Therefore, agent 1 is EEFX-satisfied by X and Y is the corresponding certificate.

3.1 Partially Ordered Instances

We saw that Algorithm 1 guarantees us an EEFX allocation, but when agents’ valuations are
ordered, the output is an EFX allocation. In many fair division contexts, valuations need not
be ordered. However, we often expect valuations to have some correlation. We show that in
this case, Algorithm 1’s output is approximately EFX.

Definition 5 (Correlated valuations). Non-negative valuation functions {v1, v2, . . . , vn} are said
to be α-correlated (where α ∈ [0, 1]) if ∀i 6= j and ∀S, T ⊆ [m], we have vi(S) ≥ vi(T ) =⇒
vj(S) ≥ α · vj(T ).

Definition 6. Let B and C be two sets of items where |B| = |C|. Let v be a non-negative
valuation function. Assume without loss of generality that B := {b1, b2, . . . , bk} and C :=
{c1, c2, . . . , ck}, where v(b1) ≥ v(b2) ≥ . . . ≥ v(bk) and v(c1) ≥ v(c2) ≥ . . . ≥ v(ck). For α ≥ 0,
we say that B �v αC if v(bj) ≥ αv(cj) for every j ∈ [k].

Lemma 9. Let V := [v1, . . . , vn] be non-negative α-correlated valuations. Let X ′ be an allocation
of items [m] among n agents. Let X := pickByList(A,V ), where A is the allocation vector of
X ′. Then for any r 6= s, we have X ′

s �vr αXs.

Proof. Without loss of generality, let r = 1 and v1 = ordered(v1). Let X ′
s := {t1, . . . , tq} and

Xs := {g1, . . . , gq}, where v1(t1) ≥ . . . ≥ v1(tq) and v1(g1) ≥ . . . ≥ v1(gq). It is sufficient to
prove that v1(tk) ≥ αv1(gk) for all k ∈ [q].
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Let S be the set of unallocated items at the beginning of round tk of pickByList. Let
i := min(S) and j := max([m] \S), i.e., i is the first unallocated item and j is the last allocated
item. Since gk got allocated in round tk, we have gk ≥ i.

Case 1: j < i. Since tk − 1 items have been allocated so far, we have j = tk − 1 and i = tk.
Hence, gk ≥ i = tk, so v1(tk) ≥ v1(gk) ≥ αv1(gk).

Case 2: i > j. Since tk − 1 items have been allocated so far, we have i ≤ tk − 1 and
j ≥ tk. Since j 6∈ S, it was picked by someone in an earlier round. Suppose agent p had picked
j in round ℓ < tk. Since i ∈ S, i was unallocated in round ℓ. Since agent p picked j instead
of i, we get vp(j) ≥ vp(i). Since valuations are α-correlated, we get v1(j) ≥ αv1(i). Hence,
v1(tk) ≥ v1(j) ≥ αv1(i) ≥ αv1(gk).

Hence, v1(tk) ≥ αv1(gk) for all k ∈ [q].

Lemma 10. Let X := BarKri(V ), where V := [v1, v2, . . . , vn], vi is the valuation of agent i,
and vi is non-negative and additive. If valuations V are α-correlated, then X is an α-EFX
allocation.

Proof. Let v′i := ordered(vi) for i ∈ [n]. Let X ′ be an EFX allocation for valuations [v′1, . . . , v
′
n]

(as computed at Line 2 of BarKri). Let A be the allocation vector of X ′. Then X =
pickByList(A,V ).

Let wi := oneLess(vi). We will show that v1(X1) ≥ αw1(Xi) for every i ≥ 2. By symmetry,
this would imply that X is α-EFX. Assume without loss of generality that v1 = v′1. Since X

′ is
EFX for valuations [v′1, . . . , v

′
n], we get that agent 1 is EFX-satisfied by X ′.

By Lemma 9, X ′
i �v1 αXi for i ∈ [n] \ {1}, so w1(X

′
i) ≥ αw1(Xi). Hence,

v1(X1) ≥ v1(X
′
1) (by Theorem 4)

≥ w1(X
′
i) (agent 1 is EFX-satisfied by X ′)

≥ αw1(Xi).

Hence, X is α-EFX.

3.2 Chores

In this section, we see how to extend our results so far to fair-division of chores.

Theorem 11. There is a polynomial-time algorithm to find an EFX allocation for an ordered
fair division instance when valuations are non-positive and cancelable.

Proof sketch. When valuations are non-positive and cancelable, we can show that the top-
trading-envy-cycle-elimination algorithm [11] finds an EFX allocation for ordered instances
when items are allocated in non-increasing order of disutility.

Lemma 12. Let X := BarKri(V ), where V := [v1, v2, . . . , vn], vi is the valuation of agent i,
and vi is non-positive and cancelable. Then X is an EEFX allocation. Furthermore, given X ′

from line 2 of BarKri(V ), we can compute the EEFX-certificates of all agents in polynomial
time.

Proof. We will show that agent 1 is EEFX-satisfied by X and show how to compute her EEFX-
certificate in polynomial time. Then Lemma 12 would follow by symmetry. Assume without
loss of generality that v1(1) ≥ v1(2) ≥ . . . ≥ v1(m). Then v1 = v′1, where v′i := ordered(vi). Let
di := −vi and d′i := −v′i.

Define Y1 := X1. Let [m] \X ′
1 := {t1, t2, . . . , tq}. Let [m] \X1 := {c1, c2, . . . , cq}. Without

loss of generality, assume d1(t1) ≤ d1(t2) ≤ . . . ≤ d1(tq) and d1(c1) ≤ d1(c2) ≤ . . . ≤ d1(cq). For
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i ≥ 2, define Yi := {cj : tj ∈ X ′
i}. Define Y := (Y1, Y2, . . . , Yn). Note that Y can be computed

in polynomial time. By Theorem 5, we get [m] \X1 �v1 [m] \X ′
1, which implies d1(cj) ≥ d1(tj)

for all j. Hence, for every i ≥ 2, we get Yi �d1 X ′
i.

Let wi := oneLess(di). By Theorem 4, we have X1 �d1 X ′
1. By Lemma 7, we get w1(X1) ≤

w1(X
′
1). X ′ is an EFX allocation for valuations [v′1, . . . , v

′
n]. Since v1 = v′1, agent 1 is EFX-

satisfied by X ′ for valuation v1. This gives us w1(X
′
1) ≤ d1(X

′
i) for all i ∈ [n]. Since X ′

i �d1 Yi,
Lemma 6 gives us d1(X

′
i) ≤ d1(Yi) for all i ∈ [n] \ {1}. Hence, for each i ∈ [n] \ {1}, we

get w1(Y1) = w1(X1) ≤ w1(X
′
1) ≤ d1(X

′
i) ≤ d1(Yi). Hence, agent 1 is EFX-satisfied by Y .

Therefore, agent 1 is EEFX-satisfied by X and Y is the corresponding certificate.

Lemma 13. Let V := [v1, . . . , vn] be non-positive valuations. Let X ′ be an allocation of items
[m] among n agents. Let X := pickByList(A,V ), where A is the allocation vector of X ′. Let
di := −vi for i ∈ [n], and let [d1, . . . , dn] be (1/α)-correlated. Then for any r 6= s, we have
Xs �dr (1/α)X ′

s.

Proof. Without loss of generality, let r = 1 and v1 = ordered(v1). Let X ′
s := {t1, . . . , tq} and

Xs := {c1, . . . , cq}, where d1(t1) ≤ . . . ≤ d1(tq) and d1(c1) ≤ . . . ≤ d1(cq). It is sufficient to
prove that d1(tk) ≤ αd1(ck) for all k ∈ [q].

Let S be the set of unallocated items at the beginning of round tk of pickByList. Let
i := min(S) and j := max([m] \S), i.e., i is the first unallocated item and j is the last allocated
item. Since ck got allocated in round tk, we have ck ≥ i.

Case 1: j < i. Since tk − 1 items have been allocated so far, we have j = tk − 1 and i = tk.
Hence, ck ≥ i = tk, so d1(tk) ≤ d1(ck) ≤ αd1(ck).

Case 2: i > j. Since tk − 1 items have been allocated so far, we have i ≤ tk − 1 and
j ≥ tk. Since j 6∈ S, it was picked by someone in an earlier round. Suppose agent p had picked
j in round ℓ < tk. Since i ∈ S, i was unallocated in round ℓ. Since agent p picked j instead
of i, we get dp(j) ≤ dp(i). Since valuations are α-correlated, we get d1(j) ≤ αd1(i). Hence,
d1(tk) ≤ d1(j) ≤ αd1(i) ≤ αd1(ck).

Hence, d1(tk) ≤ αd1(ck) for all k ∈ [q].

Lemma 14. Let X := BarKri(V ), where V := [v1, v2, . . . , vn], vi is the valuation of agent i,
and vi is non-positive and additive. Let di := −vi. If [d1, . . . , dn] are (1/α)-correlated, then X
is an α-EFX allocation.

Proof. Let v′i := ordered(vi) for i ∈ [n]. Let X ′ be an EFX allocation for valuations [v′1, . . . , v
′
n]

(as computed at Line 2 of BarKri). Let A be the allocation vector of X ′. Then X =
pickByList(A,V ).

Let wi := oneLess(di). We will show that w1(X1) ≤ αd1(Xi) for every i ≥ 2. By symmetry,
this would imply that X is α-EFX. Assume without loss of generality that v1 = v′1. Since X

′ is
EFX for valuations [v′1, . . . , v

′
n], we get that agent 1 is EFX-satisfied by X ′.

By Lemma 13, Xi �d1 (1/α)X ′
i for i ∈ [n] \ {1}, so d1(X

′
i) ≤ αd1(Xi). Hence,

w1(X1) ≤ w1(X
′
1) (by Theorem 4)

≤ d1(X
′
i) (agent 1 is EFX-satisfied by X ′)

≤ αd1(Xi).

Hence, X is α-EFX.
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4 Relationship Between EEFX and Other Notions of Fairness

4.1 MMS

Theorem 15. Let X = (X1,X2, . . . ,Xn) be an allocation of goods [m] among n agents. Let v
be the valuation function of agent k and let MMSk be the maximin share of agent k. Let v be
non-negative and strongly monotone, i.e., ∀Y ⊂ X ⊆ [m], v(Y ) < v(X). If v(Xk) ≥ MMSk,
then agent k is EEFX-satisfied by X.

Proof. Without loss of generality, assume k = 1. For a non-empty set S of items, define
top(S) := argmaxg∈S v(S \ {g}), w(S) := maxg∈S v(S \ {g}) and w(∅) := 0.

We will obtain an EEFX-certificate of agent 1 forX by modifying [m]\X1. This modification
will take place in multiple iterations. For an allocation Y = (Y1, . . . , Yn), define

φ1(Y ) := |{j : j > 1 and v(Yj) ≤ v(Y1)}|.

φ2(Y ) :=
n

max
i=2

w(Yi).

φ3(Y ) := |{j : j > 1 and w(Yj) = φ2(Y )}|.

φ(Y ) := (φ1(Y ), φ2(Y ), φ3(Y )).

For allocations Y and Z, we say that φ(Y ) < φ(Z) iff φ(Y ) is lexicographically less than φ(Z).

In any iteration, if φ2(X) ≤ v(X1), then X is an EEFX-certificate for agent 1, and we’re
done. Otherwise, we will modify [m] \X1 such that φ(X) reduces. Since φ(X) can only take
finitely many values, we will eventually reach a point where φ2(X) ≤ v(X1). Hence, we will
assume φ2(X) > v(X1) from now on.

Assume φ1(X) = 0. Then v(Xi) > v(X1) for all i > 1. Without loss of generality, assume
w(Xn) = φ2(X). Let gn := top(Xn). Let Y1 := X1∪{gn}, Yn := Xn−{gn}, and Yj := Xj for j ∈
[n−1]−{1}. Then v(Yn) = w(Xn) = φ2(X) > v(X1), v(Y1) > v(X1) (by strong monotonicity),
and for j ∈ [n− 1]− {1}, v(Yj) = v(Xj) > v(X1). Hence, minni=1 v(Yi) > v(X1) > MMS1. This
is a contradiction, by the definition of maximin share. Hence, φ1(X) ≥ 1.

Without loss of generality, assume w(Xn) := φ2(X) and v(X2) ≤ v(X1). Let gn := top(Xn).
Let Y2 := X2 ∪ {gn}, Yn := Xn − {gn}, and Yj := Xj for j 6∈ {2, n}. Then v(Yn) = w(Xn) >
v(X1). Hence, φ1(Y ) ≤ φ1(X). If v(Y2) > v(X1), then φ1(Y ) = φ1(X) − 1, and we replace X
by Y and this iteration ends.

Now let v(Y2) ≤ v(X1). Then φ1(Y ) = φ1(X). Then w(Y2) ≤ v(Y2) ≤ v(X1) < w(Xn) =
φ2(X). Also, w(Yn) < v(Yn) = w(Xn) = φ2(X) (by strong monotonicity). Hence, φ(Y ) < φ(X),
and this iteration ends.

Corollary 15.1. For strongly monotone valuations, an MMS allocation is also an EEFX allo-
cation.

When valuations are not strongly monotone, an MMS allocation may not be an EEFX
allocation, even for identical and additive valuations. Consider the following example (modified
from [24]): Let there be 2 goods {a, b} and 2 agents. Let v1(a) = 0 and v1(b) = 1. Then
MMS1 = 0, so (∅, {a, b}) is an MMS allocation. However, agent 1 is not EEFX-satisfied.

Even though MMS implies EEFX, approximate MMS doesn’t imply approximate EEFX.

Observation 16. Let there be 2 agents having identical and additive valuations. Let there be
3 goods of values 1, ε(1 − ε), and ε2, where 0 < ε < 1. Let X be an allocation where agent 1
receives a good of value ε(1−ε) and agent 2 receives the other two goods. Then X is (1−ε)-MMS,
but not ε-EEFX.
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Lemma 17. Let X = (X1,X2, . . . ,Xn) be an allocation where agent i is EFX-satisfied. Then
for non-negative additive valuations, vi(Xi) ≥

4n
7n−2 MMSi.

Proof. Can be inferred from the proof of Proposition 3.4 in [1].

Corollary 17.1. An EEFX allocation among n agents is also a 4n/(7n − 2)-MMS allocation
under non-negative additive valuations.

Proof. Let Y be an EEFX allocation. For any agent i, let X be the corresponding EEFX-
certificate. Then vi(Yi) = vi(Xi) ≥

4n
7n−2 MMSi by Lemma 17.

4.2 PROPx, PROPm, PROP1

We define a relaxation of EEFX and EF1, called EEF1, and show that an EEF1 allocation is
also a PROP1 allocation (c.f. Section 1.2 to recall definitions of PROPx, PROPm and PROP1).
This implies that MMS allocations (for strongly monotone valuations), EF1 allocations and
EEFX allocations are also PROP1 allocations.

On the other hand, we give examples of allocations that are PROPx but not EEF1. This
shows that PROPx allocations may not be MMS, EF1 or EEFX.

Definition 7. Agent i is said to be EEF1-satisfied by allocation X = (X1, . . . ,Xn) if there
exists an allocation Y = (Y1, . . . , Yn) such that Yi = Xi and agent i is EF1-satisfied by Y , i.e.,

vi(Yi) ≥ max
j 6=i

min
g∈Xj

vi(Xj \ {g}).

Y is then called the EEF1-certificate of X. Allocation X is called EEF1 if every agent is
EEF1-satisfied by X.

Lemma 18. Let X be an EEF1 allocation of items [m] among n agents. When valuations are
additive, X is also a PROP1 allocation.

Proof. Let Y be the EEF1-certificate of X for agent i. Then

vi(Xi) = vi(Yi) ≥ max
j 6=i

min
g∈Yj

vi(Yj \ {g})

≥
1

n− 1

∑

j 6=i

min
g∈Yj

vi(Yj \ {g})

=
vi([m] \Xi)

n− 1
−

1

n− 1

∑

j 6=i

max
g∈Yj

vi(g)

≥
vi([m] \Xi)

n− 1
−max

j 6=i
max
g∈Yj

vi(g)

=
vi([m] \Xi)

n− 1
− max

g∈[m]\Xi

vi(g)

=⇒ vi(Xi) ≥
vi([m])

n
−

n− 1

n
max

g∈[m]\Xi

vi(g) ≥
vi([m])

n
− max

g∈[m]\Xi

vi(g).

Hence, X is a PROP1 allocation.

Lemma 19. There is a PROPx allocation of 6 goods among 2 agents that is not an EEF1
allocation, even when agents’ valuations are identical, additive and positive.
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Proof. When there are only two agents, an allocation is EEF1 iff it is EF1.

Let v be the valuation function of both agents. Let v(1) = v(2) = v(3) = 1 and v(4) = v(5) =
v(6) = 2. Let X = ({1, 2, 3}, {4, 5, 6}). Then v(X1) = 3 and v([m])/2 − ming∈[m]\X1

v(g) =
9/2 − 2 = 5/2. Hence, X is PROPx. However, ming∈X2

v(X2 − {g}) = 4, so X is not EF1.

Lemma 20. There is an MMS allocation of 6 goods among 3 agents that is not a PROPm
allocation, even when agents’ valuations are identical, additive and positive.

Proof. Let X := (X1,X2,X3) be an allocation, where X1 has one item of value 3, X3 has 3
items of value 1, and X3 has an item of value 6 and an item of value 1. Then the MMS is 1 but
the PROPm threshold for agent 1 is 10/3.

Corollary 20.1. An EEFX allocation may not be a PROPm allocation.

Lemma 21. Let X be an EFX allocation of items [m] among n agents. When valuations are
additive, X is also a PROPm allocation.

Proof. Let i ∈ [n]. Since X is EFX, we get

vi(Xi) ≥ max
j 6=i

max
g∈Xj

vi(Xj \ {g})

≥
1

n− 1

∑

j 6=i

max
g∈Xj

vi(Xj \ {g})

=
vi([m] \Xi)

n− 1
−

1

n− 1

∑

j 6=i

min
g∈Xj

vi(g)

≥
vi([m] \Xi)

n− 1
−max

j 6=i
min
g∈Xj

vi(g)

=⇒ vi(Xi) ≥
vi([m])

n
−

n− 1

n
max
j 6=i

min
g∈Xj

vi(g)

≥
vi([m])

n
−max

j 6=i
min
g∈Xj

vi(g).

Hence, X is a PROPm allocation.

5 Open Problems

1. Can we achieve a better approximation guarantee for maximin share along with EEFX?
Currently we achieve 2/3-MMS with EEFX. Is it possible to improve it to the best known
approximation factor of 3/4 for MMS?

2. To prove NP-hardness for the following decision problem: Given an allocation for fair-
division instance with goods, decide if it is EEFX.

3. Existence and computation of EEFX+EF1 allocations. A counter-example for this ques-
tion will also provide a counter-example for the existence of EFX allocations.
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[15] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum nash welfare. ACM Transactions
on Economics and Computation, 7(3), September 2019. doi:10.1145/3355902.

[16] Hau Chan, Jing Chen, Bo Li, and Xiaowei Wu. Maximin-aware allo-
cations of indivisible goods. In International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), page 1871–1873, 2019. URL:
https://dl.acm.org/doi/abs/10.5555/3306127.3331947.

[17] Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. EFX exists for three
agents. In ACM Conference on Economics and Computation, pages 1–19, July 2020.
doi:10.1145/3391403.3399511.

[18] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, and PranabenduMisra.
Improving EFX guarantees through rainbow cycle number, 2021. arXiv:2103.01628.

[19] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A
little charity guarantees almost envy-freeness. SIAM Journal on Computing, 50(4):1336–
1358, 2021. doi:10.1137/20M1359134.

[20] Jugal Garg and Setareh Taki. An improved approximation algorithm for maximin shares.
Artificial Intelligence, page 103547, 2021. doi:10.1016/j.artint.2021.103547.

[21] David Kurokawa, Ariel D Procaccia, and Junxing Wang. When can the maximin share
guarantee be guaranteed? In AAAI Conference on Artificial Intelligence, 2016. URL:
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12282.

[22] Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approxi-
mately fair allocations of indivisible goods. In ACM Conference on Electronic Commerce,
pages 125–131, 2004. doi:10.1145/988772.988792.

[23] Peter McGlaughlin and Jugal Garg. Improving nash social welfare approximations. J.
Artif. Intell. Res., 68:225–245, 2020.

[24] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general val-
uations. SIAM Journal on Discrete Mathematics, 34(2):1039–1068, April 2020.
doi:10.1137/19M124397X.

[25] Ariel D Procaccia and Junxing Wang. Fair enough: Guaranteeing approximate max-
imin shares. In ACM Conference on Economics and Computation, pages 675–692, 2014.
doi:10.1145/3140756.

15

https://doi.org/10.1145/3328526.3329574
https://doi.org/10.1145/3355902
https://dl.acm.org/doi/abs/10.5555/3306127.3331947
https://doi.org/10.1145/3391403.3399511
http://arxiv.org/abs/2103.01628
https://doi.org/10.1137/20M1359134
https://doi.org/10.1016/j.artint.2021.103547
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12282
https://doi.org/10.1145/988772.988792
https://doi.org/10.1137/19M124397X
https://doi.org/10.1145/3140756

	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Notation and Preliminaries
	2.1 Cancelable Valuations
	2.2 Ordered Valuations

	3 Finding EEFX Allocations for Cancelable Valuations
	3.1 Partially Ordered Instances
	3.2 Chores

	4 Relationship Between EEFX and Other Notions of Fairness
	4.1 MMS
	4.2 PROPx, PROPm, PROP1

	5 Open Problems

